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Abstract

In the normal aging process, the functional connectome restructures and shows a

shift from more segregated to more integrated brain networks, which manifests itself

in highly different cognitive performances in older adults. Underpinnings of this reor-

ganization are not fully understood, but may be related to age-related differences in

structural connectivity, the underlying scaffold for information exchange between

regions. The structure–function relationship might be a promising factor to under-

stand the neurobiological sources of interindividual cognitive variability, but remain

unclear in older adults. Here, we used diffusion weighted and resting-state functional

magnetic resonance imaging as well as cognitive performance data of 573 older sub-

jects from the 1000BRAINS cohort (55–85 years, 287 males) and performed a partial

least square regression on 400 regional functional and structural connectivity

(FC and SC, respectively) estimates comprising seven resting-state networks. Our aim

was to identify FC and SC patterns that are, together with cognitive performance,

characteristic of the older adults aging process. Results revealed three different aging

profiles prevalent in older adults. FC was found to behave differently depending on

the severity of age-related SC deteriorations. A functionally highly interconnected

system is associated with a structural connectome that shows only minor age-related

decreases. Because this connectivity profile was associated with the most severe

age-related cognitive decline, a more interconnected FC system in older adults points

to a process of dedifferentiation. Thus, functional network integration appears to

increase primarily when SC begins to decline, but this does not appear to mitigate

the decline in cognitive performance.
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1 | INTRODUCTION

Age-related decreases in cognitive performance have been associated

with numerous neural substrates (Hedden et al., 2016; MacDonald &

Pike, 2021; Whalley et al., 2004) including age-related differences in

the brain network configuration (for reviews, see, Damoiseaux, 2017;

Salat, 2011; Sporns, 2013; Wig, 2017; Zuo et al., 2017). Brain net-

works comprise sets of brain regions (nodes) and their connections

(edges) which together are associated with solving specific behavioral

tasks (Schaefer et al., 2018; Smith et al., 2009; Yeo et al., 2011).

Thereby, brain regions belonging to the same network are more highly

connected (intra-network) as compared to regions outside its related

network (inter-network). The entirety of all connected regions within

and across networks forms the whole-brain connectome (Bullmore &

Sporns, 2009, 2012; Fornito, 2016; Fornito et al., 2013) that seems to

be subject to age-related reorganization in terms of both, functional

as well as structural connectivity (FC and SC).

In young adults, an efficient functional network configuration,

which is associated with high cognitive performance, is characterized

by a balance between connections of regions belonging to the same

and other networks (Bullmore & Sporns, 2012; Sadaghiani

et al., 2015; Sporns, 2013; Wig, 2017). With increasing age, however,

this segregated and specialized network configuration decomposes,

showing a shift towards a higher network integration, that is, decreas-

ing intra-network FC and increasing inter-network FC (Betzel

et al., 2014; Cao et al., 2014; Chan et al., 2014; Ferreira et al., 2016;

He et al., 2020; Mowinckel et al., 2012; Tsvetanov et al., 2016;

Varangis et al., 2019). Across the adult lifespan, intra-network FC

decreases predominantly pertain to higher-order networks, for exam-

ple, the default mode network (DMN) and frontoparietal network. In

contrast, primary processing networks, for example, the sensorimotor

(SMN) and visual network (VN) remain rather stable (Betzel

et al., 2014; Chan et al., 2014; Ferreira et al., 2016; Geerligs

et al., 2015; Grady et al., 2016; Jockwitz & Caspers, 2021; Mowinckel

et al., 2012; Siman-Tov et al., 2016; Spreng et al., 2016; Varangis

et al., 2019). In older adults, though, differences in primary processing

networks become highly apparent with age-related intra-network FC

decreases together with FC increases with higher order networks

(Edde et al., 2021; Perry et al., 2017; Stumme et al., 2020; Zonneveld

et al., 2019).

The origins of these age-related FC changes, from segregated

toward integrated networks, are not fully understood and their effect

is ambiguously interpreted. On one hand, the functional recruitment

of additional brain networks is understood as a compensation strategy

in older adults, in which age-related decreases in intra-network FC

may be compensated by functional adaptations (Cabeza et al., 2002;

Marstaller et al., 2015; Pistono et al., 2021; Reuter-Lorenz &

Cappell, 2008) to countervail cognitive performance decline (Bartres-

Faz & Arenaza-Urquijo, 2011; Spreng & Turner, 2019; Stern, 2002,

2009). On the other hand, age-related shifts toward increasing inter-

network connectivity are thought to result from longer latencies in

dynamic functional states, that is, a decreased variance in functional

dynamics across time (Battaglia et al., 2020; Naik et al., 2017). A

functional system with less variance in functional dynamics is under-

stood as a dedifferentiated system in which the ability to recruit spe-

cialized neural mechanisms and to switch between brain states is

reduced, followed by a cognitive decline (Chan et al., 2014, 2017;

Colcombe et al., 2005; Goh, 2011; Nashiro et al., 2017; Park

et al., 2004). In fact, the origin of these age-related functional reorga-

nizations and the underlying mechanism, being it compensation or

dedifferentiation, still remains unclear. To further elucidate this, the

additional analysis of SC could be helpful as it provides the structural

framework for FC.

SC was found to decrease across aging, spanning the whole brain

but with a particular vulnerability of the frontal lobe (Antonenko &

Floel, 2014; Betzel et al., 2014; Gunning-Dixon et al., 2009; Puxeddu

et al., 2020; Westlye et al., 2010; Zhao et al., 2015; Zuo et al., 2017).

In a recent study of older adults, age-related disruption of the struc-

tural connectome was found to impair both network segregation and

network integration (Li et al., 2020). As such, age-related alterations in

SC may relate to the disrupted balance between network integration

and segregation in FC. So far, the interrelation between SC and FC

and their differences across aging are still a matter of debate. While

there exist many studies characterizing age-related differences in

terms of functional and structural networks in isolation (for reviews,

see, Damoiseaux, 2017; Jockwitz & Caspers, 2021; Wig, 2017; Zuo

et al., 2017), there are fewer studies that have jointly examined FC

and SC in the aging process (for review, see, Lynn & Bassett, 2019;

Straathof et al., 2019). Results on the direct relation between FC and

SC in terms of age-related differences appear mixed. On the one

hand, FC and SC were found to change mostly independently across

the lifespan (Fjell et al., 2017; Hirsiger et al., 2016; Tsang et al., 2017)

as well as in older adults (Hirsiger et al., 2016) indicating that SC only

weakly influences or constricts age-related differences in FC. On the

other hand, studies suggest that SC and FC are interrelated, and that

during adolescence changes in the structural connectome are associ-

ated with the development and specialization of functional systems

(Baum et al., 2020). Across the lifespan, Zimmermann et al. (2016)

found increasing age to be accompanied by a greater coupling

between SC and FC, which may be explained by the fact that more

strongly integrated functional systems (as present in older adults)

were found to be more strongly rely on existing structural pathways

(Fukushima et al., 2018). With regards to cognitive performance,

Davis et al. (2012) found that functional overactivation in older adults

during task execution, for example, in contralateral regions, depends

on the integrity of the interhemispheric SC. This suggests that func-

tional restructuring in older adults is related to SC in the sense that

the ability to recruit additional brain areas, that is, to meet increasing

task demands, is mediated by the underlying SC. To date, however, no

study has looked at the relationship between whole-brain structural,

functional connectivity, and cognition in older adults. By analyzing this

triad, we aim to shed light on the possible causes of the functional

shift in older adults.

Specifically, we took advantage of a large sample of older adults

from the 1000BRAINS study to investigate SC and FC differences

that are jointly age-characteristic and related to cognition. To

5544 STUMME ET AL.
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investigate this, we used partial least squares regression (PLSR)

(Mevik et al., 2018), which, in contrast to univariate approaches, has

the great potential to effectively deal with high dimensional data.

PLSR capitalizes on the potential to detect interrelations between var-

ious predictor variables such as region-wise connectivity estimates

(comprising all networks) and cognition (Chen et al., 2019; Krishnan

et al., 2011; McIntosh & Lobaugh, 2004; Yoo et al., 2018). PLSR

decomposes predictor variables (cognition, SC, and FC estimates) into

smaller sets of independent components, that is, aging profiles, that

are maximally correlated with age. These aging profiles unveil region-

wise estimates of SC and FC that are together related to cognition

and particularly age-characteristic. As we investigate an older adult

sample (55–85 years), we assume low FC of primary processing net-

works together with high FC between higher-order networks to be

age-characteristic. With respect to SC, we hypothesize that older

adults have lower connectivity overall, particularly in regions of the

frontal lobe. How region-wise age-related SC and FC differences are

interrelated, tough, is uncertain and analyzed from an explanatory,

holistic perspective.

2 | METHODS

2.1 | Subjects

The subjects of the current study are drawn from 1000BRAINS

(Caspers et al., 2014), a large longitudinal population-based cohort

study investigating the interindividual variability in brain structure,

function, and connectivity and its relations to behavioral, environmen-

tal, and genetic factors. Subjects included in 1000BRAINS were

recruited from the 10-year follow-up of the epidemiological

population-based Heinz Nixdorf Recall Study, a study investigating

risk factors for atherosclerosis, cardiovascular disease, cardiac infarc-

tion, and cardiac death (Schmermund et al., 2002). 1000BRAINS aims

at characterizing the aging process at the level of the general popula-

tion, therefore no exclusion criteria other than eligibility for MR mea-

surements (Caspers et al., 2014) were applied. 1000BRAINS

comprises 969 older adults aged between 55 and 88 years of one

measurement time point, as relevant for the current cross-sectional

study design. From the initial sample, 114 participants had to be

excluded due to preprocessing failure caused by artifacts in structural

T1 scans, problems during normalization procedure, or insufficient

AROMA-denoising (n = 98). Subsequently, functional data were qual-

ity checked and excluded in cases of insufficient quality (n = 16, see

Section 2.2.2 for description of quality control). Of these

855 participants, 720 subjects also had diffusion-weighted images

available, from which another 69 were excluded after quality control

of the diffusion-weighted images (see Section 2.2.1 for the descrip-

tion of quality control). Finally, participants with missing information

on education (n = 1), the dementia screening test (n = 13, DemTect;

Kalbe et al., 2004), or those with indication for potential cognitive

impairment (score of eight or lower, n = 1) according to the dementia

screening test were excluded. After the exclusion of participants with

more than three missing values in the cognitive performance tests as

well as outliers (mean ± 3 * standard deviation[SD]), the final study

sample comprises n = 573 subjects (Table 1). All subjects gave written

informed consent prior to inclusion in 1000BRAINS. The study proto-

col of 1000BRAINS was approved by the Ethics Committee of the

University of Essen, Germany. Due to local regulations of data acquisi-

tion and usage, data of 1000BRAINS are available upon request from

the responsible principal investigator.

2.2 | Imaging

Magnetic resonance imaging was performed using a 3T Siemens Tim-

TRIO MR scanner with a 32-channel head coil (Erlangen, Germany).

For the investigation of SC and FC, different sequence images were

included in the current study (see Caspers et al. (2014) for a detailed

description of the 1000BRAINS study protocol): For surface recon-

struction, a three-dimensional high-resolution T1 weighted

magnetization-prepared rapid acquisition gradient-echo (MPRAGE)

anatomical scan was acquired [176 slices, slice thickness 1 mm, repeti-

tion time (TR) = 2250 ms, echo time (TE) = 3.03 ms, field of view

(FoV) = 256 � 256 mm2, flip angle = 9�, voxel resolution

1 � 1 � 1 mm3]. For structural connectivity analyses, high-angular

resolution diffusion imaging (HARDI) data with the following parame-

ters were used: (1) 120 directions dataset; EPI, TR = 8 s,

TE = 112 ms, 13 b0-images (interleaved), 120 images with

b= 2700 s/mm2, voxel resolution= 2.4 � 2.4 � 2.4 mm3; (2) 60 direc-

tion subset (out of 120 direction dataset); EPI, TR = 6.3 s,

TE = 81 ms, 7 b0-images (interleaved), 60 images with b = 1000 s/

mm2, voxel resolution = 2.4 � 2.4 � 2.4 mm3. For functional connec-

tivity analysis, resting-state functional MRI data were acquired as a

blood-oxygen level-dependent (BOLD) gradient-echo planar imaging

(EPI) sequence with 36 transversally oriented slices (slice thickness

3.1 mm, TR = 2200 ms, TE = 30 ms, FoV = 200 � 200 mm2, voxel

resolution 3.1 � 3.1 � 3.1 mm3) was used, lasting for �11 min and

producing 300 volumes. During RS image acquisition, participants

were instructed to keep their eyes closed, be relaxed, let their mind

TABLE 1 Descriptives of the study
sample

n, proportion in %

Age in years Education

Mean (SD) Min Max Mean (SD) Min Max

All 573, 100% 66.9 (6.7) 55.1 85.4 6.5 (1.9) 3 10

Male 287, 50.1% 67.6 (7.0) 55.1 85.4 7.1 (1.9) 3 10

Female 286, 49.9% 66.2 (6.4) 55.2 85.4 6.0 (1.9) 3 10

STUMME ET AL. 5545
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wander, and to not fall asleep. The latter was assured by postscan

debriefing.

2.2.1 | Structural image processing

For each participant, tissue probability maps (TPM) for grey matter

(GM), white matter (WM) as well as corticospinal fluid (CSF) were

computed from T1 data using the Computational Anatomy Toolbox

(CAT12; Gaser & Dahnke, 2016) implemented in SPM12

(Ashburner, 2009; for a listing of software used see Table S1). To opti-

mally extract the brain from the T1 data, brain masks were used cre-

ated by superimposing the three probability maps and thresholding

them at 0.5 (small enclosed holes were filled). Using the FSL toolbox

(FMRIB Software Library: http://www.fmrib.ox.ac.uk/fsl; Jenkinson

et al., 2012), the T1 brain image was bias field corrected, rigidly

aligned to MNI152 template space, and resampled to 1.25 mm isotro-

pic voxel size. These scans were then used as coregistration image for

the subsequent alignment of the similarly resampled diffusion data

(see below) to the MNI152 template [in accordance with standard

pipelines as used in, e.g., the human connectome project (www.

humanconnectomeproject.org) or the UK Biobank (www.ukbiobank.

ac.uk)]. Diffusion MRI data (dMRI) were corrected for eddy current

and motion artifacts including interpolation of slices with signal drop-

outs (Andersson et al., 2016; Andersson & Sotiropoulos, 2016). Visual

quality control was performed to check for ghosting, remaining signal

dropouts, or very noisy data. Suboptimal volumes or datasets were

removed from further analyses (n = 69). For dMRI-T1 alignment, the

first b0 images from each dMRI data with b1000 and b2700 were

extracted and rigidly aligned to T1 dataset using mutual information

as a cost function (Wells et al., 1996). Based on the corresponding

transforms, all dMRI data were registered to the individual T1 space,

separately for the two b-values. The realignment implicitly resampled

the data to 1.25 mm and b-vectors were rotated according to the

transformations. To account for susceptibility artifacts and optimize

image registration, we computed Anisotropic Power Maps (APM;

Dell'Acqua et al., 2014) from the b2700 dMRI data. Since the APM

contrast is very similar to the T1 image, they provide an optimal basis

for image registration. Accordingly, APMs were used to compute the

nonlinear transformation from diffusion to anatomical space addition-

ally taking EPI-induced distortions into account using ANTs (https://

stnava.github.io/ANTs/). The derived nonlinear transformations were

then used to transform the TPMs to diffusion space. Finally, the two

datasets with b1000 and b2700 were merged into one single file and

corrected for different echo times. This correction was computed by a

voxel-wise multiplication of the b2700 data with the ratio of the

nondiffusion-weighted data, respectively, for the two datasets. Subse-

quently, local modeling and probabilistic streamline tractography were

performed using the MRtrix software package (Tournier et al., 2012)

version 0.3.15. The constrained spherical deconvolution (CSD) local

model was computed using multi-tissue CSD of multi-shell data

(Jeurissen et al., 2014) using all shells and a maximal spherical har-

monic order of 8. Ten million streamlines were computed with

dynamic seeding in the grey-white matter interface for every subject

using the probabilistic iFOD2 algorithm with a maximal length of

250 mm and a cut-off value of 0.06.

2.2.2 | Functional image processing

Functional image preprocessing was performed using the FSL toolbox

(FMRIB Software Library: http://www.fmrib.ox.ac.uk/fsl; Jenkinson

et al., 2012). For each participant, the first four echo-planar imaging

(EPI) volumes were discarded. Using a two-pass procedure, all func-

tional images were corrected for head movement using rigid-body

registration. First, all volumes were aligned to the first image on which

a mean image was created serving as the basis to which secondly, all

volumes were aligned. To identify and remove motion-related inde-

pendent components from functional MRI data, ICA-based Automatic

Removal Of Motion Artifacts (ICA-AROMA; Pruim et al., 2015) was

applied. According to current suggestions for minimizing the relation-

ship between motion and resting-state FC (Burgess et al., 2016; Ciric

et al., 2017; Parkes et al., 2018), AROMA was combined with global

signal regression in the current study. Finally, all resting-state fMRI

images were bandpass filtered (0.01–0.1 Hz) and registered to the

standard space template (MNI152) using the unified segmentation

approach (Ashburner & Friston, 2005). This was preferred to normali-

zation based on T1 weighted images as previous studies indicated

increased registration accuracies (Calhoun et al., 2017; Dohmatob

et al., 2018). With AROMA particularly focusing on the correction of

intensity artifacts induced by head motion, we further on took advan-

tage of an established algorithm by Afyouni and Nichols (2018) to

check for each participant's volume-wise severe intensity dropouts by

generating p values for spikes (DVARS) on the already preprocessed

functional data. In the current study, volumes with corrupted spikes

are indicated and participants for which more than 10% of the

300 volumes (Stumme et al., 2020) were detected as dropouts were

excluded from further analyses (n = 8). Further, based on the prepro-

cessed mean AROMA functional data, we checked for potential mis-

alignments by performing the “check sample homogeneity using

standard deviation across sample” function provided by the CAT12

toolbox (Gaser & Dahnke, 2016) and excluded participants for which

the individual image did not align to the MNI152 template (>2

SD, n = 8).

2.3 | Connectivity analyses

To analyze FC and SC data, we parcellated the whole brain into

400 different regions comprising seven networks [visual (VN), sensori-

motor (SMN), limbic (LN), frontoparietal (FPN), default mode (DMN),

dorsal (DAN), and ventral attention network (VAN)], as defined in Yeo

et al. (2011) using the predefined cortical parcellation of Schaefer

et al. (2018). This was done according to recent studies, which found

a resolution of 300–600 nodes to be optimal for functional (Schaefer

et al., 2018) and structural analyses (Varikuti et al., 2018).

5546 STUMME ET AL.
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In terms of FC, mean time-series spanning 296 time points (first

four of in total 300 volumes were discarded) were extracted node-

wise from the preprocessed resting-state fMRI data [fslmeants (Smith

et al., 2004)] averaging the timeseries of all voxels corresponding to

that node. FC between nodes was estimated using Pearson's

product–moment correlation of the respective average BOLD time

series resulting in a symmetric 400 � 400 matrix, with each entry

(i.e., edge) representing a Pearson's correlation coefficient between

the respective nodes. To minimize the number of edges caused by

noise, we included the statistical significance of each correlation coef-

ficient as an additional preprocessing step. Therefore, the observed

time-series were randomized by taking its Fourier transform, scram-

bling its phase, and then inverting the transform (Stumme et al., 2020;

Zalesky et al., 2012). This procedure was repeated 1000 times and fol-

lowed by a permutation test (nonsignificant edges at p ≥ .05 were set

to zero). The adjacency matrix was then transformed into z-scores by

applying a Fishers r-to-z transformation. Integrating both, positive as

well as negative weights into the estimation of strength values leads

to a mutual suppression by canceling each other out. Therefore, we

separated the FC matrices, with one containing only positive correla-

tions (FCpos) and the second containing only the absolute values of

negative correlations (FCneg), with the other values set to zero in

each case.

Regarding SC, the parcellation template was first warped to indi-

vidual diffusion space by combining the nonlinear warps of the spatial

T1 registration to MNI152 template and the distortion correction with

the APMs. Since streamlines are generated seeding from the grey-

white matter interface and the predefined parcellation scheme only

covers cortical grey matter, we expanded the template adding voxels

towards the grey-white matter boundary so that all regions also

include the seeding points. To increase the biological accuracy of SC,

we converted streamline counts between each pair of nodes into

weighting factors using a cross-sectional area multiplier (SIFT-2; Smith

et al., 2015). Finally, the derived 400 � 400 matrix was log10

transformed.

Each of the SC, FCpos as well as FCneg whole brain connectomes

(i.e., 400 � 400 connectivity matrices) were then transformed into a

triangular matrix (diagonal set to NaN) as only unidirectional informa-

tion of edges was used. Based on the three different matrices, we cal-

culated two different parameters for each node:

i. Intra-network connectivity estimate comprising the sum of

weights (i.e., connectivity values) of edges from one node to all

nodes within its corresponding network divided by the number

of all edges in the network (for n nodes, there are n*[n � 1]/2

possible edges in a fully connected network)

ii. Inter-network connectivity estimate comprising the sum of edge

weights from one node to all nodes outside its corresponding

network divided by the number of the respective edges.

Thus, for each node, six different strength values were calculated,

three intra-network (SC, FCpos, and FCneg) and three inter-network

estimates (SC, FCpos, and FCneg), in total comprising 2400 connectivity

values (400 nodes � 6 strength values) for each subject. Of note, den-

sity values for functional inter- and intra-network parameters can be

found in Table S2.

2.4 | Cognitive performance

All subjects underwent comprehensive neuropsychological assess-

ment addressing a wide range of cognitive functions including the

domains of attention, episodic and working memory, executive as well

as language functions (for a detailed description of neuropsychological

tests, see, Caspers et al., 2014; Jockwitz et al., 2017; Stumme

et al., 2020). In cases of one (n = 31) or two (n = 6) missing values in

the neuropsychological assessment (≥3 missing values led to exclu-

sion, see above), they were replaced by the appropriate median (calcu-

lated separately for sex and age decades: 55–64 years, 65–74 years,

75–80, and >85 years). Principal component analysis (PCA) was

applied to reduce the neuropsychological data to one cognitive per-

formance component (COG). Previously, data was tested on suitability

for PCA, using the Kaiser–Meyer–Olkin (KMO) index indicating suit-

ability of data for PCA (KMO = 0.89; Tabachnick et al., 2007).

2.5 | Statistics

To unveil FC and SC patterns that are, together with cognitive perfor-

mance, characteristic for the older adults' aging process, we per-

formed a partial least square regression (PLSR; Mevik et al., 2018)

with COG, whole-brain region-wise SC, FCpos, and FCneg values as

predictor variables (corrected for sex and education) and chronological

age as the response variable. PLSR is a multivariate statistical

approach that has the advantage of effectively dealing with multiple

predictor variables that may even extend the number of observations

and depict high collinearity (Haenlein & Kaplan, 2004; Krishnan

et al., 2011; McIntosh & Lobaugh, 2004). In PLSR, predictor variables

are decomposed into a smaller set of independent components (using

a nonlinear iterative partial least squares algorithm, NIPALS) on which

a least square regression is performed to define components that are

maximally correlated with the response variable. Hence, within one

component predictor variables (COG, SC, FCpos, and FCneg) are clus-

tered in a unique combination, such that a unique amount of variance

is used to explain the highest possible amount of variance in age. In

the following, the components are called “aging profiles,” that is, com-

prising both the connectivity predictors (connectivity profile) and the

cognitive performance predictor.

To extract the number of components that explain a significant

proportion of variance in age without overfitting the model, a permu-

tation approach with cross-validation is included in PLSR (Mevik

et al., 2018; Mevik & Wehrens, 2015). Thereby, PLSR is repeatedly

calculated with the inclusion of different numbers of components,

each run omitting one individual and determining cross-validated

residual values (leave one out cross-validation to depict the difference

between the actual response and predicted response value). For each
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model (different number of components included), the root mean

squared error of prediction (RMSEP) is calculated by summing all

squared prediction errors. Based on the derived RMSEP for each com-

ponent, a permutation test is used to determine the number of com-

ponents to be included until there is no further significant

improvement in predictive performance [α = .01; for a detailed

description of PLSR, also see, Mevik and Wehrens (2015) and Mevik

et al. (2018)].

For each component, PLSR provides loading values for each

predictor variable indicating the association between predictor and

age (whether the predictor shows age-related connectivity

increases or decreases). Components-derived loading values then

reveal how region-wise connectivity estimates are combined, that

is, how they are together age-characteristic. Furthermore, with

COG being included as a predictor variable, components-derived

connectivity profiles can additionally be related to cognitive

performance.

To assure that results of the PLSR are applicable and robust

across multiple datasets, we split the whole sample into 1000 differ-

ent training (80%, n = 458) and test datasets (20%, n = 115), per-

formed PLSR on the training datasets and applied the derived model

to the remaining test datasets to predict age (based on their predictor

variables). Further, to validate that PLSR on real data performs signifi-

cantly better as compared to random data, we reran all analyses with

1000 null models (created by randomly scrambling age and connectiv-

ity estimates) and compared model performances. All PLSRs were

additionally performed with only the inclusion of cognition and FC or

cognition and SC. To ensure that the results are not dependent on the

specific sample split that was used, we also performed the same ana-

lyses by using three other sample divisions (90/10%, 70/30%, and

60/40%). Finally, to ensure that results were robust to participant's

health status, we reran PLSR with the additional inclusion of available

covariates indicative of our participants' state of health [total grey

matter volume (ml), white matter lesions (mm3), blood pressure

(mmHg), blood glucose concentration (%), and BMI (body mass index)].

For details, see Figure S1 and Table S3.

After model validation, the different PLSR-derived components,

that is, aging profiles, were inspected. As stated above, for each of the

1000 permutations, PLSR provides loading values for each predictor

variable in each component. To make the strength of loadings more

easily interpretable across networks, we calculated network-wise

average mean loading values (the average across all mean loading

values within one network). With regards to previous literature indi-

cating that the frontal lobe is structurally more sensitive to age-

related decreases as compared to the rest of the brain, we statistically

tested this by calculating the average mean loading values of regions

located within the frontal lobe and compared these to the average

mean loading values located in the rest of the brain using an undi-

rected two-sample t-test (Figure S6).

3 | RESULTS

3.1 | Cognitive performance

Using PCA, we reduced the cognitive performances across 16 different

cognitive test scores into one comprehensive cognitive performance

component (Figure 1). Relating the cognitive factor to age, sex, and

education revealed a significant negative correlation with age

(r = �.44, p < .001, corrected for sex and education), a significant pos-

itive relation to education (r = .40, p < .001, corrected for age and

sex), and no sex-related performance differences (F = 2.31, p = .129,

corrected for age and education).

3.2 | PLSR—Model validation

Results from the PLSR model validation revealed that the inclusion of

three components appears optimal in the current context, that is, the

model explains sufficient variance, while preventing an overfitting of

the model. Importantly, PLSR on real models performed significantly

better as compared to null models [RMSEPreal(SD) = 5.45 (.07);

RMSEPnull(SD) = 7.68 (.23); Figure 2a, Table 2]. Additively including

information of the first, second, and third components revealed a suc-

cessive increase of explained variance in age (first: R2 = 22.7%; sec-

ond: R2 = 44.9%; third: R2 = 56.2%) and an increasing correlation

F IGURE 1 PCA derived factor
loadings for the cognitive
performance, ordered descendent
according to the strength of loading.
STM, short-term memory; WM,

working memory
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between predicted and chronological age (first: r = .41, p < .001; sec-

ond: r = .54, p < .001, third: r = .6, p < .001; Figure 2b).

Of note, the inclusion of various covariates addressing the partici-

pants' health status did not result in any significant alterations of the

presented effects (Figure S1, Table S3). Further, performing PLSR on

different training and test sample sizes (60%/40%, 70%/30%,

80%/20%, 90%/10%) revealed highly comparable results across all

sample splits (Figure S2, Tables S4–S6). Finally, PLSR based on either

cognition with SC or cognition with FC revealed both models to sig-

nificantly outperform null models, though with better model perfor-

mances based on SC as compared to FC (Figure S2, Tables S5 and S6).

3.3 | PLSR: Aging profiles

The PLSR model validation revealed the variance in age to be

described by three different components, that is, aging profiles.

Within each component, predictor variables (COG and connectivity

estimates) were combined in a unique way such that they show the

highest possible correlation with age. All components show a negative

correlation with age (first component: r = .46, p < .001, second com-

ponent: r = .5, p < .001, third component: r = .35, p < .001;

Figure 3a). Within each component, this age-related shift can com-

prise age-related increases or decreases of predictors, determined for

each predictor variable separately and indicated by the respective

loading value.

We found cognitive performance to be depicted by positive load-

ing values in all components with an emphasis on the second compo-

nent (first component: COGmean(SD) = .022 (.002), second component:

COGmean(SD) = .030 (.005), third component: COGmean(SD) = .021

(.002); Figure 3b) indicating that higher ages are related to lower

global cognitive performance, especially in the second component.

Regarding the connectivity profiles, that is, how region-wise con-

nectivity predictors are combined in each aging profile, we plotted

region-wise mean loading values (the mean of a predictor's loading

values derived from 1000 permutations) for intra- and inter-network

SC, FCpos, and FCneg onto the brain surface (Figure 3c). While positive

loading values indicate age-related connectivity decreases (blue color),

negative loading values show the opposite association, that is, age-

related connectivity increases (red color). Overall higher loading values

F IGURE 2 PLSR model description. (a) Model performance across 1000 real models (green) or null models (grey): RMSEP (SD) as bars and
explained variance in age (%, R2) as lines including up to 10 components. Dashed line indicating the utilized model in the current study.
(b) Prediction accuracies derived from applying the PLSR model on 80% of the sample to unseen test datasets (20% of the sample): Correlation
between predicted and chronological age including the information of only the first component, the first and second component, or all three
components. Individual score values depict the mean scores across 1000 permutations
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indicate a stronger association with age underpinning these connec-

tivity estimates to be highly age-characteristic. In the following sec-

tions, the three derived age-related connectivity profiles will be

successively described by referring to the concurrent effects of SC,

FCpos, and FCneg. As outlined in Section 2, network-wise mean loading

values were calculated to make the strength of loadings more easily

interpretable across networks (Figure 4). For results on region-wise

loading, which are informative about the distribution of loadings

within networks, refer to Figures S3–S5.

3.4 | First component

In the first component, 8% of the variance in the predictor variables is

used to explain the highest variance in age (23%) indicating that this

connectivity profile is most applicable to older adults. Within this

component, older age is characterized by overall low SC. Looking at

the region-wise loading values for SC (Figure 3c-A), age-related

decreases seem to particularly affect the frontal lobe. Statistically

comparing loading values in frontal brain areas to the rest of the brain

F IGURE 3 (a) Model derived individual score values for the first, second, and third components in relation to the participant's chronological
age. (b) Loading values for cognitive performance in the first, second, and third components: Higher loadings indicate lower cognitive
performance at higher ages. (c) Region-specific loading values for the first (A, B, C), second (D, E, F), and third component (G, H, I): Intra- and inter-
network SC (A, D, G), FCpos (B, E, H), and FCneg (C, F, I) plotted onto the brain surface. Blue colors indicate lower and red colors higher
connectivity values being characteristic for higher ages
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indeed revealed intra-network SC (t = 4.7, p < .001) as well as inter-

network SC (t = 5.3, p < .001) to be significantly higher in frontal brain

parts (Figure S6). Network-wise, the FPN, DMN, and SMN are

depicted by the strongest age-related decreases, while the FPN,

DMN, and VAN are most sensitive in terms of age-related inter-

network SC decreases. Because the FPN, SMN, DMN, and VAN have

regions located in both frontal as well as more posterior brain parts,

SC decreases seem to affect regions in the frontal lobe independent

of their network affiliation.

This age-related decrease in SC is accompanied by overall age-

related decreases of the intra-network FCpos (Figure 3c-B) and

increases of intra-network FCneg (Figure 3c-C) pertaining to all net-

works distributed across the whole brain. Hence, while coactivations

of regions within networks decrease with higher age, their anticorrela-

tions show an opposite trajectory. Thereby, loading values of primary

processing networks are notably high [FCpos: VNmean(SD) = .027 (.002),

SMNmean(SD) = .033 (.002); FCneg: VNmean(SD) = .021 (.002), SMNmean

(SD) = .015 (.002), Figure 4a] indicating the strongest age-related dif-

ferences in both positive connections and anticorrelations. Concur-

rently, the inter-network FCpos shows age-related decreases

(Figure 3c-B). This, however, is not applicable to higher order net-

works: regions inside the VAN, LN, FPN, and DMN show age-related

increases, mainly pertaining to the FPN and DMN [FPNmean

(SD) = �.001 (.003), DMNmean(SD) = �.004 (.003); Figures 3c-B and

4a]. Anticorrelations show decreases across all networks indicating

less network-specific coactivations, but more simultaneous activations

of regions from different networks.

Cohesively, the first connectivity profile implies age-related

decreases in SC and FCpos accompanied by increasing anticorrelations

within all networks and across the whole brain. Specifically, as the

age-related decline of SC affects the whole brain, we see age-related

decreases of the intra-network FCpos in particularly primary proces-

sing networks together with age-related increases of inter-network

FCpos of higher-order networks. Regarding cognition, increasing age is

associated with decreasing performance that is comparable to the

third component and slightly less advanced compared to the second

component [first component: COGmean(SD) = .022 (.002), second com-

ponent: COGmean(SD) = .030 (.005), third component: COGmean

(SD) = .021 (.002); Figure 3b].

3.5 | Second component

In the second component, another 4% of the variance in the predictor

variables is clustered such that it explains another 22% of the variance

in age. In contrast to the first component, the second component

comprises a connectivity profile in which age-related SC decreases

only affect the frontal lobe and parts of the parietal lobe, while

regions within the temporal, and occipital lobe and the insula remain

rather stable (Figure 3c-D). This is applicable to both, intra- and inter-

network SC. Accordingly, SC decreases in frontal brain areas are again

significantly stronger as compared to the rest of the brain (intra-

network SC: t = 2.5, p = .015; inter-network SC: t = 2.7, p = .008,

Figure S6). Inspecting the loading values across networks (Figure 4b,

Figure S4), each network comprises regions with positive as well as

negative loading values indicating age-related differences of regions

to be rather independent of their network affiliation.

In terms of FC, the second component FCpos is (in contrast to the

first component) overall high in older adults (Figure 3c-E). This is appli-

cable to the FCpos within- as well as between-networks, with an

emphasis on the SMN (intra-network: SMNmean(SD) = .043 (.006);

inter-network: SMNmean(SD) = .052 (.006); Figure 4b). Furthermore,

especially between networks, anticorrelations show age-related

increases, indicating that networks do not only show more coactiva-

tions, but also higher anticorrelations in higher ages (Figure 3c-F). Of

note, comparing the intra-network SC and FC (left column in

Figure 3c-D, E, F) one can see that regions which remain rather stable

in SC across age (superior temporal lobe and insular) seem to show

comparably low increases in FCpos and FCneg. In contrast, regions with

stronger age-related decreases in SC show stronger increases in both,

FCpos as well as FCneg. Remarkably, the second component is associ-

ated with the strongest age-related differences in cognitive perfor-

mance as indicated by the highest COG loading value (Figure 3b).

3.6 | Third component

As compared to the first and second components, the third compo-

nent explains less variance in age (11%) by using 7% of the variance of

the predictors. Therefore, this connectivity profile is comparably less

representative for older adults. Here, the SC show overall negative

loading values indicating a stable SC system across age (Figure 3c-G)

with no age-related SC decreases affecting either the intra- or inter-

network SC of any networks (Figure 4c). Remarkably, this overall sta-

ble SC profile is clustered together with overall low FCpos (Figure 3c-

H) as well as low FCneg (Figure 3c-I). Thereby, the intra- and inter-

network FCpos, as well as inter-network FCneg of primary processing

networks, show the strongest relations to age, indicating that these

networks are most age-characteristic and showing the strongest age-

related decreases [intra-network FCpos: VNmean(SD) = .024 (.003),

SMNmean(SD) = .024 (.003); inter-network FCpos: VNmean(SD) = .038

(.003), SMNmean(SD) = .040 (.003); inter-network FCneg: VNmean

(SD) = .035 (.003), SMNmean(SD) = .033 (.004); Figure 4c]. In terms of

cognitive performance, this connectivity profile is similar to the first

component accompanied by cognitive performance decreases

(Figure 3b).

F IGURE 4 Network-wise mean loading values (SD) for the first, second, and third components visualized as bar plots: Inter- and inter-
network SC, FCpos, and FCneg (colored according to their respective network, from top to bottom: Brown = DMN, orange = FPN, grey = LN,
pink = VAN, green = DAN, blue = SMN, violet = VN)
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4 | DISCUSSION

As we age, the functional connectome undergoes a process of reorga-

nization that manifests itself in a shift from segregated to more inte-

grated brain networks and which was found to be relevant in terms of

cognitive performance. The causes of this functional restructuring are

not yet fully understood, but are related to differences in SC. Since SC

is the underlying scaffold for information exchange between regions,

age-related SC differences may explain age-related FC reorganiza-

tions. Here, we took advantage of a large cohort of older adults and

performed a multivariate statistical approach (PLSR) on the partici-

pant's regions-wise FC, SC and global cognitive performance. Specifi-

cally, we examined how region-wise FC and SC are together age-

characteristic and related to cognitive performance. In doing so, we

aim to contribute to the understanding of age-related functional

restructuring by considering SC differences that are associated with it.

Results of PLSR indicate that the variance in age is explained by

three different aging profiles. Of note, sensitivity analyses indicate

these aging profiles to be robust across multiple sample splits and

independent of the overall health status of participants. In line with

previous research PLSR with only cognition and SC explained more

variance in age as compared to cognition and FC (Cole, 2020).

Inspecting the aging profiles in detail revealed interesting interrela-

tions of region-wise FC and SC estimates, which will be discussed as

follows.

With regards to previous research, we assumed age-related

decreases in SC across the whole brain with a particular focus on the

frontal lobe. This is exactly what is captured by the first aging profile

(first component). Here, SC across the whole brain was characteristic

for higher ages and the strongest age-related decreases in SC pertain

to the frontal lobe. These effects were very similar not only for the

two hemispheres, but also for SC within and between networks.

Hence, decreases affect the SC between any regions (in all networks),

but especially those located in the frontal lobe. Previous results on

lifespan changes indicate that white matter of the frontal lobe is par-

ticularly vulnerable to the aging process showing the greatest deterio-

rations across ages while white matter of temporal and occipital

regions seem to be relatively preserved (Antonenko & Floel, 2014;

Gunning-Dixon et al., 2009; Rojkova et al., 2016; Salat, 2011; Salat

et al., 2005; Zhao et al., 2015). In the current sample of older adults,

we found the first component to capture SC decreases that affect the

whole brain. Thereby, decreases in frontal brain areas are indeed most

age-specific, but the rest of the brain is additionally affected, though

to a somewhat lesser extent. These effects may represent a more

advanced picture of aging (in older adults as compared to lifespan

samples) that has additionally affected SC in parietal and temporal

regions.

This SC profile is clustered together with a FC profile that very

much matches the typical FC aging pattern described in previous

research on older adults (Edde et al., 2021; Perry et al., 2017; Stumme

et al., 2020; Zonneveld et al., 2019). The functional profile of the first

component is in line with our hypothesis that higher age is character-

ized by lower intra-network FC of particularly primary processing

networks together with a higher integration between higher-order

networks. The strongest age-related decreases of intra- and inter-

network FC pertain to the VN and SMN indicating that in older adults

a reduced FCpos of particularly primary processing networks is charac-

teristic for higher ages. Concurrently, higher order networks (espe-

cially the DMN and FPN) show higher positive inter-network FC at

higher ages, perfectly reflecting the assumed age-related shift towards

a stronger network integration of higher order networks (Betzel

et al., 2014; Edde et al., 2021; Ferreira et al., 2016; He et al., 2020;

Stumme et al., 2020; Tsvetanov et al., 2016; Varangis et al., 2019).

Complementary to positive FC, FC anticorrelations within networks

show overall age-related increases in FC which could indicate that

regions within a network work less coherently at higher ages. How-

ever, these results must be viewed with caution, as anticorrelation

within networks are rather unlikely and may be caused by a topo-

graphical deviation of older adults to the younger adults parcellation

used in the current study (further discussed in the methodological

considerations). In turn, anticorrelations between networks decrease,

indicating a reduced ability to deactivate brain networks while activat-

ing another, and thus leading to a shift towards greater inter-network

integration (Edde et al., 2021; Ferreira et al., 2016; Keller et al., 2015;

Spreng et al., 2016). Current research agrees that lower intra-network

FC is associated with lower performances, meaning that less coherent

networks result in poorer cognitive functioning (Ewers et al., 2021;

Fjell et al., 2015; Marques et al., 2016; Stumme et al., 2020).

In turn, inter-network FC increases can be interpreted in two

ways: as a compensatory attempt or a dedifferentiation process. In

terms of compensation, the additional functional recruitment of higher

order networks may be understood as the attempt to more intensively

involve additional control processes (e.g., monitoring, introspection,

and attention processes) to maintain cognitive performances despite a

decay of network coherence. A higher recruitment of brain regions

may be accompanied by increasing wiring costs, but may also be

accompanied by a higher cognitive reserve, that is, performance main-

tenance (Festini et al., 2018; Franzmeier et al., 2018). As discussed in

Stumme et al. (2020), specific coactivations may indeed be beneficial

for cognitive maintenance. However, with an increasing number of

coactivations, specific access to the auxiliary functions and thus the

compensatory purpose of the system may be lost and replaced by a

rather dedifferentiated system. A functionally dedifferentiated system

is characterized by a reduced distinctiveness of activity patterns

throughout the brain (Edde et al., 2021; Ferreira et al., 2016; Keller

et al., 2015; Spreng et al., 2016) limiting the access to specific cogni-

tive processing, which is associated with impaired performances

(Monteiro et al., 2019; Spreng & Turner, 2019). The first component is

accompanied by age-related decreases in cognitive performance indi-

cating that the additional recruitment of higher order networks during

rest cannot hinder a cognitive decline. In view of the large age range

(55–85 years), the strong cognitive changes in older subjects

(Hedden & Gabrieli, 2004; Salthouse, 2019) and the widely affected

SC decreases, a halt of cognitive loss is not to be expected. Collec-

tively, the first component captures a connectivity profile in which

both, FC and SC show their previously described typical age-related
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differences in parallel. Accordingly, this aging profile explains the most

variance in age.

The second component explains only slightly less variance in age

as compared to the first component, indicating that there exists

another aging profile that is particularly age-characteristic in older

adults. Here, the overall SC is less affected by age with only the fron-

tal lobe showing age-related decreases, while the parietal and occipital

lobes remain stable. As discussed above, this may comprise a less

advanced aging process (Antonenko & Floel, 2014; Gunning-Dixon

et al., 2009; Rojkova et al., 2016; Salat, 2011; Salat et al., 2005; Zhao

et al., 2015), in which SC decreases have not yet affected the whole

brain. In the case of initially decreasing SC in the frontal lobe while

simultaneously large parts of the brain remain structurally intact, the

brain exhibits a functionally maximally interconnected system. In fact,

previous work suggests a functional over-recruitment of brain areas

to be a response to age-related structural changes that itself would

cause a poor processing of cognitive functions (Marstaller et al., 2015;

Park & Reuter-Lorenz, 2009; Pistono et al., 2021; Reuter-Lorenz &

Park, 2014). In response to decreasing white matter pathways, the

aging brain must seek alternative functional routes to maintain com-

munication between regions (Naik et al., 2017). In this regard, overall

high functional interactions could be an adaptive recalibration process

resulting from the initial decline of the frontal lobe to maintain cogni-

tive performance. Unlike the first component, the second component

still has a large portion of SC paths that can be used to select alternate

routes so that an exchange of information is maintained. However,

because the second component is associated with the strongest age-

related cognitive decline, this supports the dedifferentiation theory, in

which specific access to desired functions is reduced (Edde

et al., 2021; Ferreira et al., 2016; Keller et al., 2015; Spreng

et al., 2016). As discussed above, in a compensation process we might

expect more specific coactivations that recruit specific functions to

maintain cognitive performance. As the recruitment of additional brain

regions increases (either on purpose or due to necessary detours),

increasing inter-network FC may no longer be supported, but rather

result in a decreased functional diversity of brain networks. Hence,

although a compensation process may have aspired, a supportive

character of increasing coactivations may at some point be replaced

by a decreased functional diversity of brain networks. In this context,

it is highly interesting that more and more research additionally

includes time into the analyses of brain function looking at functional

connectivity dynamics (FCD), that is, how the FC varies across time. It

has been found that with increasing age the time-dependent variance

of functional states, called metastability, declines (Battaglia

et al., 2020; Lou et al., 2019; Naik et al., 2017; Xia et al., 2019). Here,

the functional activity is characterized by reduced differentiated activ-

ity states, meaning that a high proportion of functional systems are

activated in parallel. A lower metastability is, thereby, characterized

by a lower ability of the functional system to transition between dif-

ferent cognitive states, that is, if the whole system is similarly acti-

vated, the potential to switch between states diminishes. This is

thought to reduce the capacity to also behaviorally switch between

concepts and to slow the rate of functional adaptations to external

influences (Escrichs et al., 2021; Lee et al., 2019; Xia et al., 2019).

Computational models showed that reduced metastability is a

response to SC decline (Deco & Kringelbach, 2016; Lavanga

et al., 2022; Naik et al., 2017). Hence, the functionally highly intercon-

nected system found in the second component could point towards a

low capacity to switch between functional states potentially resulting

from the incipient SC decline and would explain the strongest associa-

tion with cognitive performance decline. Including FCD estimates in

this context, thus, would be highly promising for future research.

It remains open why the brain associated with the most severe

SC decline (as in the first component) does not show a highly inter-

connected functional system. Participants with minor SC deterioration

may experience an onset of cognitive decline, that is find the everyday

tasks more difficult, but still strive to maintain cognitive performance,

which may then be addressed by an increase in functional intercon-

nectivity (Gaviria et al., 2021). However, with regards to the “Com-

pensation-related utilization of neural circuits hypothesis” (Reuter-

Lorenz & Cappell, 2008), the functional capacity to respond to

increasing task difficulty is exhausted at some point and the attempt

to compensate for increasing task complexity by functional overacti-

vation is no longer even considered. Further, an overall reduced SC in

the first component limits the possibility of alternative routes and

may logistically not allow information to be relayed via many different

regions.

Following the course of descending severity of SC decline from

the first over the second to the third component, the third component

reflects a connectivity profile which we may consider as well pre-

served. In this case, higher age is depicted by comparably high SC,

while the overall FC is low. Overall high SC points to a well-preserved

underlying architecture that enables an efficient exchange of informa-

tion between regions while consuming as little energy as possible

(Lynn & Bassett, 2019). The associated resting brain exhibits rather

weak FC both within and between all networks. Higher overall com-

munication in the brain, that is, connectivity, requires higher energy

consumption (Tomasi et al., 2013). At the same time, a highly inter-

connected functional system reduces the ability to efficiently switch

between brain states (Chan et al., 2014, 2017; Colcombe et al., 2005;

Goh, 2011; Nashiro et al., 2017; Park et al., 2004), which is associated

with lower cognitive performance (Lavanga et al., 2022). Accordingly,

the functional connectivity system of this third component could

reflect a rather low-energy state of the resting brain, which at the

same time may involve a high ability to efficiently adapt to external

stimuli. However, this connectivity profile is comparatively less repre-

sentative in older adults, which is plausible in light of previous results

showing a continuous SC decline into old age (Cox et al., 2016;

Gunning-Dixon et al., 2009; Li et al., 2020).

Collectively, we found three different connectivity profiles to be

related to age in older adults. Each connectivity profile is depicted by

different severity of SC decline. While a well-preserved SC system is

accompanied by a comparably low interconnected functional system,

a decline in SC seems to go along with an increase in the brain

FC. The functionally highest interconnected system is present when

the underlying white matter pathways are only slightly damaged. This
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could indicate that an increasing FC is the reaction to an incipient

decline of the underlying SC construct, which logistically allows the

transmission of information in various detours. However, we found

that the highest interconnected functional system was associated

with the greatest decline in cognitive performance, indicating a shift

towards higher network integration to represent a dedifferentiation

process. In fact, the compensation and dedifferentiation theories do

not cancel each other out. Instead, an interlocking process in which a

beneficial compensation process is replaced by a steadily decreasing

diversity of functional systems may be conceivable.

4.1 | Methodological considerations

The results of the present study are based on a cross-sectional design.

The current cross-sectional design has the advantage of a large sam-

ple size representative of and thus, largely generalizable for, the gen-

eral older population in West Germany. For capturing the

intraindividual age-related changes in the relationship between SC

and FC, however, longitudinal studies are warranted.

A potential limitation of the current study pertains to the spe-

cific functional network parcellation used, which is based on resting-

state data from younger adults. Methods for such imaging-based

brain parcellations improved considerably over the recent decade

(Eickhoff et al., 2018). Nevertheless, so far, no whole brain network

parcellation based on older adults exists integrating both, structural

and functional information. Within the current study, we chose the

current parcellation based on previous work on functional (Schaefer

et al., 2018) and anatomical data (Varikuti et al., 2018) indicating

fine-grained parcellations of 300–600 nodes to be optimal. Espe-

cially using fine-grained parcellations, however, transformation pro-

cedures between image modalities could influence inter-subjects'

variance. Hence, changes in the parcellation granularity and further,

the inclusion of subcortical structures would be interesting for future

studies focusing on SC–FC relations during aging and their link to

cognitive performance.

SC evolves, rearranges, and strengthens in developmental stages,

after brain injuries as well as across the lifespan as a result of, for

example, learning processes (Fields, 2005; Salat, 2011; Yeatman

et al., 2014). However, in older ages, increases in SC are rather

unlikely and may point to yet unresolved methodological constraints.

In addition, tractography on diffusion imaging data is not a direct mea-

surement, but only an estimation of anatomical connectivity

(Sotiropoulos & Zalesky, 2019) known to under-represent long-

distance white matter connections (de Reus & van den Heuvel, 2013).

Across the aging process the paucity of long-distance connections

even increases, which may foster increasing short-range connections

(Puxeddu et al., 2020; Zhao et al., 2015). So far, a ground truth for

structural connectomes has not yet been developed. To optimally pic-

ture the biological SC, we conducted streamlined filtering as an addi-

tional step in diffusion MRI denoising (Smith et al., 2015).

Furthermore, particularly for SC, network properties are known to

depend on the methodology applied, which potentially makes specific

network results less generalizable (Qi et al., 2015).

As compared to previous studies on age prediction our model

explains less variance in age. Although the validation process

revealed our PLSR model to perform significantly better as compared

to random data underpinning the model's prediction ability. So far,

the optimal method for age prediction is still under debate (Smith

et al., 2019). Predictions were found to perform best using structural

brain volume data (Cole et al., 2017; Cole & Franke, 2017; Franke

et al., 2010; Liem et al., 2017), while age prediction on connectivity

data was found to perform significantly lower explaining about

40%–60% of the variance in age (Dosenbach et al., 2010; Han

et al., 2014; Li et al., 2018; Vergun et al., 2013). With respect to the

current study, the intended restriction to region-wise connectivity

estimates limits the informative value for age prediction to only par-

ticular connectivity values. The inclusion of more specific connectiv-

ity measures, for example, individual edge weights, may potentially

increase prediction accuracy.

Finally, it should be noted that FC anticorrelations imply a qualita-

tively distinct type of interaction between brain regions, which is not

yet clearly interpretable (Chai et al., 2012; Fornito et al., 2013;

Murphy & Fox, 2017). Negative correlations may be artificially

induced, when using global signal regression in functional imaging pre-

processing (Fox et al., 2009; Murphy et al., 2009; Murphy &

Fox, 2017). Therefore, results on negative correlations have been

included in this study as additional complementary evidence for the

general relation between FC and SC, without demanding clear inter-

pretability on its own.

5 | CONCLUSION

The normal aging process is accompanied by a restructuring of the

functional connectome, characterized by a shift from more segregated

to more integrated brain networks which was found to be important

for changes in our cognitive performance. Causes of the functional

restructuring remain unclear, but may be associated with age-related

SC differences, depicting the underlying scaffold for information

exchange between regions. By performing PLSR with FC and SC esti-

mates as well as cognitive performance data from a large cohort of

older adults, we investigated the interdependency of region-wise SC

and FC differences and how these are, together with cognitive perfor-

mance, characteristic of older adults' age. Our results revealed three

different aging profiles to be prevalent in older adults. Overall, it

appears that the frontal lobe of older adults is particularly affected by

aging with respect to SC showing the greatest age-related decline. In

terms of brain function, primary processing networks are most indica-

tive of the older adult's age. In this context, the functional activity pat-

tern seems to behave differently depending on the severity of SC

deterioration. In a well-preserved structural connectome, the brain

exhibits a less interconnected system at rest, characterized by particu-

larly low connections between networks. In turn, when SC shows
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minor age-related deteriorations affecting the frontal lobe, the brain

exhibits a functionally maximally connected system. Because this con-

nectivity pattern was associated with the most severe age-related

cognitive decline, a more interconnected functional connectivity sys-

tem in older adults points to a process of dedifferentiation.
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